高中数学弦切角定理的求证方法1 顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角) 如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB,∠TCA下面是小编为大家整理的2023年度高中数学弦切角定理求证方法,菁选2篇(范例推荐),供大家参考。
高中数学弦切角定理的求证方法1
顶点在圆上,一边和圆相交,另 一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角)
如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB,∠TCA,∠PCA,∠PCB都为弦切角。
编辑本段弦切角定理
弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的"一半.弦切角定理证明:
证明一:设圆心为O,连接OC,OB,。
∵∠TCB=90-∠OCB
∵∠BOC=180-2∠OCB
∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)
∵∠BOC=2∠CAB(圆心角等于圆周角的两倍)
∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)
证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.
高中数学弦切角定理的求证方法2
证明:分三种情况:
(1)圆心O在∠BAC的一边AC上
∵AC为直径,AB切⊙O于A,
∴弧CmA=弧CA
∵为半圆,
∴∠CAB=90=弦CA所对的圆周角 (2)圆心O在∠BAC的内部.
过A作直径AD交⊙O于D,
若在优弧m所对的劣弧上有一点E
那么,连接EC、ED、EA
则有:∠CED=∠CAD、∠DEA=∠DAB
∴ ∠CEA=∠CAB
∴ (弦切角定理)
(3)圆心O在∠BAC的外部,
过A作直径AD交⊙O于D
那么 ∠CDA+∠CAD=∠CAB+∠CAD=90
∴∠CDA=∠CAB
∴(弦切角定理)